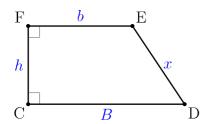

Nivel 1 • Geometría • Cuadriláteros • Teoría (14)

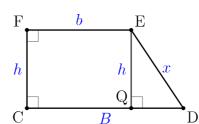
El trapecio rectángulo

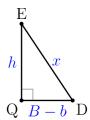
- * El trapecio rectángulo tiene dos lados paralelos, que se llaman **bases**.
- * El trapecio rectángulo tiene dos ángulos consecutivos rectos.
- * La altura del trapecio rectángulo coincide con uno de los lados que no son paralelos.

Ejemplo

- * El cuadrilátero ABCD de la figura es un trapecio rectángulo.
- **★** Tiene dos lados paralelos: AB | CD.
- * Los ángulos en los vértices A y D son ángulos rectos.
- **★** La altura es la longitud del lado AD.

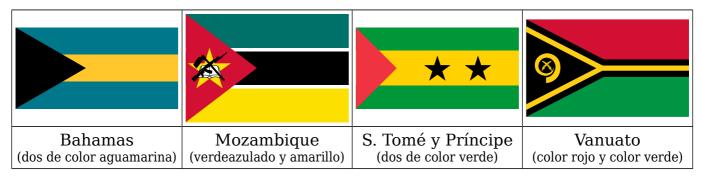

Propiedad


- * En un trapecio rectángulo hay una relación entre las dos bases, la altura y la longitud del lado que no forma ningún ángulo recto.
- \star Si llamamos B y b a las bases, h a la altura y x a la longitud del lado que no forma ángulos rectos, se verifica:


$$x^2 = h^2 + (B - b)^2$$

Demostración

Consideramos el trapecio CDEF; llamamos $B = \overline{\text{CD}}$ y $b = \overline{\text{EF}}$ a las bases, $h = \overline{\text{FC}}$ a la altura y $x = \overline{\text{DE}}$ a la longitud del lado que no forma ángulos rectos.


Licencia: CC0 1.0 Universal

Obtenemos el punto Q como la proyección del punto E sobre el segmento CD y afirmamos que $\overline{EQ} = h$ y $\overline{QD} = B - b$.

Como el triángulo QED es un triángulo rectángulo en el que la hipotenusa mide x, un cateto mide h y el otro cateto mide B-b, se puede aplicar el teorema de Pitágoras para obtener $x^2=h^2+(B-b)^2$.

Ejemplo de uso de trapecios rectángulos

Al menos hay cuatro países que utilizan algún trapecio rectángulo en sus banderas:

