Licencia: CC0 1.0 Universal

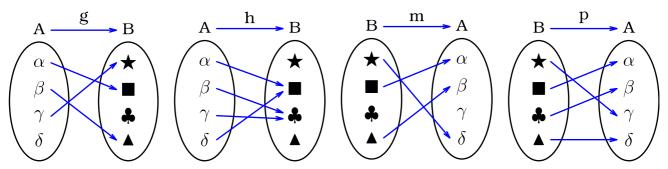
Nivel 4 • Análisis • Funciones • Teoría (02)

Dominio e imagen de una función

- * El dominio de una función es el conjunto de elementos del conjunto de partida que tienen imagen en el conjunto de llegada.
- * La imagen (también llamada el recorrido) de una función es el conjunto de elementos del conjunto de llegada que son imagen de algún elemento del conjunto de partida.
- * Si f es una función, su dominio se puede escribir Dom(f) o bien D(f).
- * Si f es una función, su imagen se escribe Im(f).

Ejemplos

Consideramos los conjuntos $A = \{\alpha, \beta, \gamma, \delta\}$ y $B = \{\star, \blacksquare, \clubsuit, \blacktriangle\}$ y las funciones g, h, m y p, que definimos con estos diagramas de Euler:



- **★** Dominio e imagen de la función g: Dom(g)= $\{\alpha,\beta,\gamma\}$; Im(g)= $\{\star,\blacksquare,\blacktriangle\}$.
- **★** Dominio e imagen de la función h: Dom(h)={α,β,γ,δ}, que es más sencillo escribir como Dom(h)=B; Im(h)={ \blacksquare ,♣}.
- **★** Dominio e imagen de la función m: Dom(m)={ \star , \blacksquare , \blacktriangle }; Im(m)={ α , β , δ }.
- **★** Dominio e imagen de la función p: Dom(p)={ \star , ■, ♣, ♠}, que es más sencillo escribir como Dom(p)=B; Im(m)={ α , β , γ , δ }, que es más sencillo escribir como Im(p)=A.

Definición con símbolos

Si f: $A \rightarrow B$ es una función, definimos:

Dominio de f = Dom(f) = $\{x \in A \mid \exists y \in B : y = f(x)\}$

Imagen de $f = Im(f) = \{y \in B \mid \exists x \in A : y = f(x)\}$

Función sobreyectiva

Una función es sobreyectiva cuando todos los elementos del conjunto de llegada son imagen de algún elemento del conjunto de partida.

Ejemplos: de los ejemplos anteriores, solo la función p es sobreyectiva.

Función biyectiva

Una función biyectiva, también llamada biyección, es una función que es inyectiva y sobreyectiva.

Las funciones biyectivas son muy importantes porque demuestran cierta similitud entre los dos conjuntos que conectan. Por ejemplo, a lo largo del curso las hemos utilizado para demostrar que \mathbb{N} , \mathbb{Z} y \mathbb{Q} tienen el mismo número de elementos.

Ejemplos: de los ejemplos anteriores, solo la función p es biyectiva.